

# УНИВЕРСАЛЬНЫЙ АВТОМАТИЧЕСКИЙ ЭЛЕКТРОННЫЙ

### ПЕРЕКЛЮЧАТЕЛЬ ФАЗ

# OptiDin ПЭФ-301

# ПАСПОРТ

(TY 3425-001-71386598-2005)



- 1 светодиоды индикации фаз;
- 2 светодиод аварии;
- 3 ручка регулировки порога срабатывания по максимальному напряжению;
- 4 ручка регулировки порога срабатывания по минимальному напряжению;
- 5 ручка регулировки времени автоматического повторного включения Твкл;
- 6 ручка регулировки времени возврата на приоритетную фазу Тв.
- 7, 8 клеммы подключения

Рисунок 1 – Лицевая панель и габаритные размеры

#### 1. НАЗНАЧЕНИЕ

Универсальный автоматический электронный переключатель фаз OptiDin ПЭФ-301 предназначен для питания промышленной и бытовой однофазной нагрузки 220В/50Гц от трехфазной четырехпроводной сети 3x380+N с целью обеспечения бесперебойного питания особо ответственных однофазных потребителей и защиты их от недопустимых колебаний напряжения в сети.

В зависимости от наличия и качества напряжения на фазах OptiDin ПЭФ-301 автоматически про-

изводит выбор наиболее благоприятной фазы и запитывает от нее однофазную нагрузку любой мощности:

- при мощности до 3,5 кВт (16 A) нагрузка питается непосредственно от OptiDin ПЭФ-301;
- при мощности, превышающей 3,5 кВт (16 A), OptiDin ПЭФ-301 управляет катушками магнитных пускателей (МП) соответствующей мощности (МП в комплект не входят).

Пороги минимального и максимального напряжения задаются пользователем.

#### 2. ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

| Номинальное фазное напряжение, В                                             | 220<br>45 - 55  |  |
|------------------------------------------------------------------------------|-----------------|--|
| Частота сети, Гц                                                             | 160 - 210       |  |
| Диапазон срабатывания по, U <sub>MAX</sub> , В                               | 230 - 280       |  |
| Наличие возврата на приоритетную фазу в диапазоне T <sub>B</sub> (5 –200), с | есть            |  |
| Наличие возврата на приоритетную фазу в диапазоне $T_B$ (200 $-\infty$ ), с  | нет             |  |
| Диапазон регулирования времени повторного включения, Т <sub>вкл</sub> , с    | 1 - 600         |  |
| Фиксированная задержка переключения (отключения) по U <sub>MIN</sub> , с     | 12              |  |
| Время переключения на резервные фазы, с, не более                            | 0,2             |  |
| Гистерезис (коэффициент возврата) по напряжению, В                           | 5 - 7           |  |
| Точность определения порога срабатывания, В                                  | ±3              |  |
| Макс. коммутируемый ток (активный) выходных контактов, А, не более           | 16              |  |
| Фазное напряжение, при котором сохраняется работоспособность прибора, В      | 400             |  |
| Кратковременно допустимое макс. фазное напряжение, при котором сохраня-      |                 |  |
| ется работоспособность, В                                                    | 450             |  |
| Потребляемая мощность (под нагрузкой), ВА, не более                          | 1,0             |  |
| Коммутационный ресурс выходных контактов:                                    |                 |  |
| - под нагрузкой 16 А (активный ток), раз, не менее                           | 100 тыс.        |  |
| - под нагрузкой 5 А, раз, не менее                                           | 1 млн.          |  |
| Степень защиты:                                                              |                 |  |
| - прибора                                                                    | IP40            |  |
| - клеммника                                                                  | IP20            |  |
| Климатическое исполнение                                                     | УХЛ4            |  |
| Диапазон рабочих температур, °С                                              | от -35 до +55   |  |
| Температура хранения, °С                                                     | от - 45 до + 70 |  |
| Габаритные размеры, мм                                                       | 52 x 88 x 65    |  |
| Масса, кг, не более                                                          |                 |  |
| Монтаж - на стандартную DIN-рейку 35 мм.                                     |                 |  |
| Попомоние в пространстве произвольное                                        |                 |  |

Положение в пространстве – произвольное.

# 3. УСТРОЙСТВО И ПРИНЦИП РАБОТЫ

Электронный переключатель фаз OptiDin ПЭФ-301 – микропроцессорное цифровое устройство.

Пользователь выставляет пороги срабатывания прибора - минимальное и максимальное значение напряжения, при котором устройство срабатывает и отключает нагрузку (переключает на резервную фазу). Подключается к трехфазной сети, согласно рисунка 2, через клеммы 1 (L1), 3 (L2), 5 (L3), 6 (N). Прибор проверяет фазы на наличие напряжения и его параметры.

Фаза L1 является приоритетной. Это значит, что при нормальных параметрах напряжения на всех фазах, подключенных к ПЭФ, нагрузка всегда будет запитана от фазы L1. Если на L1 зна-

чение напряжения выходит за пределы порогов срабатывания, OptiDin ПЭФ-301 переключает нагрузку на другую фазу, не более, чем за 0,2 с, если напряжение на ней соответствует допустимому уровню. Если напряжение на резервных фазах не соответствует выставленным порогам срабатывания – нагрузка отключается.

#### Переключение на фазу с недопустимыми параметрами не производится.

После перехода на резервную фазу и восстановления параметров напряжения на приоритетной, нагрузка переключится на приоритетную фазу через время возврата  $T_B$  (5 ÷ 200 c), заданное потребителем. Если  $T_B$  в положении « $\infty$ » (приоритет выведен), возврат на приоритетную фазу не происходит.

Если значение напряжения снизилось ниже минимального порога срабатывания, то переключение (отключение) нагрузки происходит с временной задержкой 12 с (отстройка от пусковых кратковременных посадок). Если напряжение превысило уровень максимального порога срабатывания – переключение (отключение) нагрузки происходит сразу.

При отключении нагрузки от трех фаз, OptiDin ПЭФ-301 продолжает контроль напряжения на всех фазах. Нагрузка включится через время  $T_{\rm BKN}$ , заданное потребителем, при восстановлении значения напряжения хотя бы на одной из фаз,

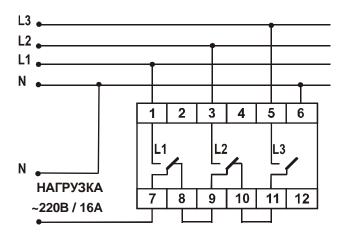
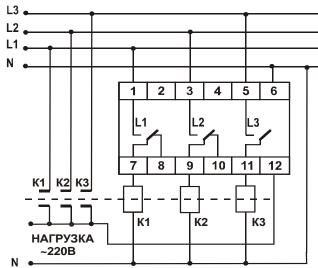




Рисунок 2 - Схема подключения OptiDin ПЭФ-301 при величине нагрузки до 16 A

В OptiDin ПЭФ-301 предусмотрена внутренняя блокировка от залипания контактов выходных встроенных реле, а также контроль состояния силовых контактов МП во внешней цепи (блокировка от их залипания, используется клемма *12*, рисунок 3).



К1, К2, К3 – магнитные пускатели

Рисунок 3 - Схема подключения OptiDin ПЭФ-301 при величине нагрузки более 16 А с использованием магнитных пускателей

#### 4. ПОДГОТОВКА К РАБОТЕ И ПОРЯДОК РАБОТЫ

Реле выпускается полностью готовым к эксплуатации и не требует особой подготовки к работе. В связи с применяемой цифровой технологией, уставки в реле достаточно точно выверены, поэтому их выставление возможно без контрольного вольтметра.

При эксплуатации реле в соответствии с техническими условиями и настоящим паспортом в течение срока службы, в том числе, при непрерывной работе, проведение регламентных работ не требуется.

**Перед включением в сеть** выставить ручками потенциометров на лицевой панели прибора пороговые значения:

**U**<sub>MIN</sub> – уровень минимального порога срабатывания реле;

**U**<sub>мах</sub> – уровень максимального порога срабатывания реле;

**Т**<sub>вкл</sub> – время автоматического повторного включения нагрузки после восстановления параметров напряжения на одной из фаз, а также время первоначального включения нагрузки при подаче напряжения на прибор;

**Т**<sub>в</sub> - диапазон времени возврата на приоритетную фазу.

Для холодильников, кондиционеров и других компрессорных приборов **Т**<sub>вкл</sub> рекомендуется выставлять в пределах 3-4 мин, для других приборов – согласно их инструкций по эксплуатации.

Допускается изменять уровни  $U_{\text{MIN}},\ U_{\text{MAX}},\ T_{\text{BKЛ}},\ T_{\text{B}}$  во время работы прибора с соблюдением правил техники безопасности.

При величине нагрузки до 16 А установить перемычки между клеммами 8-9 и 10-11 (Рисунок 2). При величине нагрузки более 16 А и в случае использования МП, убрать перемычки между клеммами 8-9 и 10-11 (Рисунок 3).

### Примечание: переключение не происходит при наличии напряжения на кл. 12

Зеленые светодиоды **L1, L2, L3** на лицевой панели показывают фазу от которой питается нагрузка. Если произойдет отключение нагрузки от всех трех фаз, горит **красный светодиод АВ**.

Если в одной сети используется несколько приборов для разных групп потребителей, то для предотвращения перегрузки по фазам, рекомендуется выбирать разные приоритетные фазы для разных однофазных потребителей.

#### 5. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

Предприятие-изготовитель гарантирует безотказную работу OptiDin ПЭФ-301 в течение **30** месяцев со дня продажи, при условии:

- -правильного подключения;
- -целостности пломбы ОТК изготовителя;
- -целостности корпуса, отсутствии следов вскрытия, трещин, сколов, прочее.

Произведено ООО «НОВАТЕК-ЭЛЕКТРО» по заказу ЗАО «КЭАЗ»

## 6. СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

| Универсальный автоматический переключатель фаз OptiDin ПЭФ-301 №                 | изготов-  |
|----------------------------------------------------------------------------------|-----------|
| лен и принят в соответствии с требованиями ТУ 3425-001-71386598-2005, действующи | эй техни- |
| ческой документацией и признан годным для эксплуатации.                          |           |

|    | Начальник ОТК |              |
|----|---------------|--------------|
| МП |               | Дата выпуска |

### 7. СВЕДЕНИЯ О РЕКЛАМАЦИЯХ

Изготовитель не принимает рекламации, если устройство вышло из строя по вине потребителя из-за неправильной эксплуатации или из-за несоблюдения указаний, приведенных в настоящем паспорте.

| По всем вопросам обращаться к предприятию-изготовителю: |  |
|---------------------------------------------------------|--|
| Дата продажи                                            |  |